Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei fromArabidopsis thalianaplants to examine whether the physiological signals, ABA and CO2(carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type–specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell–specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.more » « less
-
Abstract Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor’s working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.more » « less
-
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD–induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12 / mpk4GC double mutants that completely disrupt stomatal CO 2 signaling, indicating that VPD signaling is independent of the early CO 2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca 2+ transients in guard cells. Nevertheless, osca1-2 / 1.3 / 2.2 / 2.3 / 3.1 Ca 2+ -permeable channel quintuple, osca1.3 / 1.7 -channel double, cngc5 / 6 -channel double, cngc20 -channel single, cngc19 / 20crispr -channel double, glr3.2 / 3.3 -channel double, cpk- kinase quintuple, cbl1 / 4 / 5 / 8 / 9 quintuple, and cbl2 / 3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1 / δ5 / δ6 / δ7 ( raf3 / 6 / 5 / 4 ) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD–induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient “wrong-way” VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD–induced stomatal closing response pathway.more » « less
-
Abstract Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.more » « less
-
null (Ed.)Sucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.6-mediated phosphorylation of a defined serine residue in SNACS. ABA rapidly increases FRET efficiency in N. benthamiana leaf cells and Arabidopsis guard cells. Interestingly, protein kinase inhibition decreases FRET efficiency in guard cells, providing direct experimental evidence that basal SnRK2 activity prevails in guard cells. Moreover, in contrast to ABA, the stomatal closing stimuli, elevated CO2 and MeJA, did not increase SNACS FRET ratios. These findings and gas exchange analyses of quintuple/sextuple ABA receptor mutants show that stomatal CO2 signaling requires basal ABA and SnRK2 signaling, but not SnRK2 activation. A recent model that CO2 signaling is mediated by PYL4/PYL5 ABA-receptors could not be supported here in two independent labs. We report a potent approach for real-time live-cell investigations of stress signaling.more » « less
An official website of the United States government
